
A Software Engineering Framework
for Switched Fuzzy Systems

David Harel, Assaf Marron, Amir Nissim
Weizmann Institute of Science

Rehovot, Israel
Email: firstname.lastname@weizmann.ac.il

Gera Weiss
Ben-Gurion University

Be’er Sheva, Israel
Email: geraw@cs.bgu.ac.il

Abstract—We propose a framework for the development of
switched fuzzy systems, in which the discrete characteristics of
the mode-switching logic are implemented using the paradigm of
behavioral programming: they are coded as independent behavior
threads and are interwoven at runtime. We demonstrate how
such mode switching enables the simplification of fuzzy rules,
and reduces their total number, as well as the number of rules
evaluated in a computation cycle. The ability of the behavioral
programming approach to describe independent simultaneous
aspects of behavior in a modular and incremental manner, which
aligns with how people often specify requirements, is shown to
complement the intuitive nature of fuzzy logic. Our approach is
backed by a Java package that provides an initial infrastructure
for implementations.

I. INTRODUCTION

Hybrid controllers embody control strategies that employ
a combination of discrete and continuous rules in order to
benefit from the advantages of both worlds (see e.g., [2, 3,
5, 10, 27, 36]). Here, we are interested in the particular case
of switched fuzzy systems (see [29] for a survey), where the
switching of operation mode, or sets of fuzzy rules, enables the
simplification of the rules, a reduction in the total number of
rules, and a reduction in the number of rules evaluated during
a computation cycle.

The paper is centered around a relatively new approach
to incremental and modular development of discrete systems,
called behavioral programming, in which simultaneous as-
pects of system behavior are coded as independent behavior
threads to be interwoven at runtime. We suggest that this
approach is useful as a tool for the natural development of
control systems. Specifically, fuzzy set theory [42], which uses
natural language quantifications like ”hot” or ”dangerous” in
programming [43], has been successfully applied to a wide
range of control applications (see, e.g., [12] for a survey).
We propose to combine the fuzzy and behavioral approaches
to programming with two goals in mind, First, we wish to
make it possible to program discrete multi-step scenarios using
fuzzy quantification or classification for inputs and outputs.
Second, we wish to simplify the development of switched
fuzzy systems when the switching logic can be structured as
a composition of multiple independent scenarios.

The rest of the paper is organized as follows. Section II
presents the proposed integration method. Section III shows
how fuzziness can enhance discrete behavioral programs, and

how behavioral programming can be used to streamline the
development of switched fuzzy systems. Section IV contains
a brief description of a Java package that supports the proposed
design pattern, and in Section V we discuss related work and
conclusions.

II. A COMPUTATIONAL MODEL FOR INTERFACING
DISCRETE-BEHAVIORAL AND CONTINUOUS CONTROL

In this section we briefly introduce behavioral programming
and describe the formal model that we propose to use in
integrating, or interfacing, discrete behavioral components
with continuous fuzzy ones.

A. Behavioral programming

The main goal of behavioral programming is to enable
program construction by interweaving at runtime behavior
specifications that were coded independently of each other,
where separate requirements are captured in separate modules.
First introduced through the visual scenario-based language
of live sequence charts (LSC) [9, 17], basic concepts of
behavioral programming were then shown to be language
independent, and are now integrated into general purpose
programming languages such as Java [20] (using the BPJ pack-
age [19]) and Erlang [39]. Additional implementations include
SBT [25] and in the PiCos environment [33]. The approach is
supported by the PlayGo IDE [16], which integrates the visual
LSC language with behavioral programming in Java, and by a
prototype model-checking tool [15], which verifies behavioral
Java programs directly without first translating them into a
model-checker-specific language. In [21] an architecture for
scalable behavioral control application is proposed, and is
illustrated by stabilizing a quad-rotor aircraft (in a MATLAB
simulator) behaviorally. The main ideas behind behavioral
programming, as well as several additional pieces of relevant
research, are summarized in [18].

We use transition systems as a mathematical abstraction
of the discrete part of the switched controller. Recall that a
labeled transition system is a quadruple 〈S,E,→, init〉, where
S is a set of states, E is a set of events, → is a function
from S × E to S, and init ∈ S is the initial state. The
runs of such a transition system are sequences of the form
s0

e1−→ s1
e2−→ · · · ei−→ si · · · , where s0 = init, and for

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia FUZZ IEEE



all i = 1, 2, · · · , si ∈ S, ei ∈ E, and → (si−1, ei) = si
(commonly written as si−1

ei−→ si).
As defined in [20], each behavior thread is modeled as a

transition system, in which states are associated with event
sets, thus:

Definition 1 (behavior thread [20]). A behavior thread
(abbr. b-thread) is a tuple 〈S,E,→, init, R,B〉, where
〈S,E,→, init〉 forms a deterministic total labeled transition
system, R : S → 2E is a function that associates each state
with the set of events requested by the b-thread when in that
state, and B : S → 2E is a function that associates each state
with the set of events blocked by the b-thread when in that
state.

The set of all possible collective, interlaced runs of a set of
behaviors threads is formalized as a composition operator:

Definition 2 (runs of a set of b-threads [20]). We define the
runs of a set of b-threads {〈Si, Ei,→i, initi, Ri, Bi〉}ni=1 as
the runs of the labeled transition system 〈S,E,→, init〉, where
S = S1 × · · · × Sn, E =

⋃n
i=1Ei, init = 〈init1, . . . , initn〉,

and → includes a transition 〈s1, . . . , sn〉
e−→ 〈s′1, . . . , s′n〉 if

and only if

e ∈
n⋃

i=1

Ri(si)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(si)︸ ︷︷ ︸
e is not blocked

. (1)

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→i s
′
i)︸ ︷︷ ︸

affected b-threads move

∧ (e /∈ Ei =⇒ si = s′i)︸ ︷︷ ︸
unaffected b-threads don’t move

)
(2)

Based on these definitions, when we say that a b-thread
requests, blocks, or waits for an event, the informal intention
is as follows:
Requesting an event: requesting, or proposing, that the event

be considered for triggering/execution. The request
may or may not be satisfied.

Blocking an event: forbidding the triggering/execution of an
event.

Waiting for an event: waiting for the triggering/execution of
an event. A b-thread is considered to be waiting for
an event (a.k.a. watching out for it) in a given state,
when there is an outgoing transition from that state
labeled with the event. The triggered event may have
been requested by this b-thread or by some other
b-thread.

Note that these definitions are an abstraction. In practice,
we propose that b-threads use the full power of the language
(Java, in this case) to encode the logic succinctly and use the
BPJ library (a) to indicate when the program is “in a state”
of the transition system and (b) to assign requested, blocked
and waited-for events to each state.

The non-determinism in Definition 2 allows for more than
one run of a set of b-threads. To enable deterministic execu-
tion, we add a priority scheme, in which the b-threads and the
events are linearly ordered — inducing an order on the runs

b-thread

b-thread

b-thread

b-thread

Requested Events

Blocking

Selected Event

Fig. 1. Collective execution of behavior threads using an enhanced publish/-
subscribe protocol: (a) all b-threads place their “bids”, specifying requested
events and blocked events; (b) a synchronization mechanism chooses an event
that is requested but is not blocked; (c) b-threads waiting for the event are
notified; (d) the notified b-threads progress to their next states, where they
can place new bids.

too. The BPJ library executes a set of b-threads by choosing,
in each state of the composite system, the first event that is
requested and is not blocked. Thus, BPJ always chooses and
executes the first run in the set, subject to the above induced
order. More generally:

Definition 3 (deterministic discrete behavioral execution
mechanism). For a given set of b-threads let T be the
transition system defined in Definition 2. A deterministic
discrete behavioral execution mechanism for T is an event
selection function f : S → E such that for each s ∈ S there
exists a transition s

f(s)−−→ s′ of T (where S and E are as in
Definition 2).

Figure 1 illustrates such an execution mechanism. Its single
run is as in Definition 2, with the added requirement that in
each state the event selected is the one specified by f .

Deterministic execution mechanisms are implemented in
the BPJ package for usage by Java programs, as well as in
the scenario-based language of live sequence charts (LSC).
In LSC, scenarios are specified visually, using multi-modal
charts that depict the partial order and flow of events along
lifelines associated with the participating objects (see [9, 17]).
In the Java implementation of behavioral programming which
is used in the present paper, behavioral programs are written
in Java and hence, in addition to the behavioral aspects, they
can implement rich logic and use external packages [19, 20].

Priority-based selection is just one implementation of deter-
ministic event selection. One can introduce application-specific
intelligence, or use various forms of look-ahead, as is done in
the LSC-based techniques of smart play-out [14] and planned
play-out [22]. In the water-tap example in Section III we
discuss a generalization of the event selection logic, where
the selection among possible candidate events is programmed
using fuzziness.

As shown in [20], requesting, waiting for and blocking
events, are basic programming idioms that enable the kind of
behavioral modularity and incremental development that are at



TooHigh

1

Temperature

µ

TooHigh

Temperature

µ

0.8

40◦

Fig. 2. High temperature as a crisp (top) and fuzzy (bottom) sets. µ denotes
membership (indicator) functions.

the heart of the idea of behavioral programming (and which
are present in a somewhat different fashion also in LSC).
Significantly, they appear to align with the way people tend
to specify system requirements.

To illustrate the usage of these idioms in programming,
consider a b-thread that increases water flow in a hot water
tap by requesting five times the event of turning the tap
anticlockwise (AddHot). Another b-thread performs a similar
action on the cold water tap (AddCold). To increase the water
flow in both taps at the same time, as may be desired for
keeping the temperature stable, one may activate the above b-
threads alongside a third one, which forces the interleaving of
events in the two scenarios. The third b-thread, for example,
can be coded as “repeatedly: {block AddCold until

AddHot; block AddHot until AddCold}”. This pseudo
code maps to a transition system with two states q1, q2 where
R(q1) = R(q2) = ∅, B(q1) = {AddCold}, B(q2) = {AddHot},
q1

AddHot−−−−−→ q2, and q2
AddCold−−−−−−→ q1.

B. Fuzzy control

Fuzzy set theory and linguistic variables are mathematical
formalisms for dealing with the imprecision and vagueness of
natural language notions often used in human reasoning.

A fuzzy set [42] A ⊆ X is defined by a membership
function µA : X → [0, 1] which assigns each element a degree
of membership in the set. Figure 2 shows the definition of ‘too
high’ temperature as a classic and fuzzy set.

Using fuzzy sets, whose membership criteria is gradual,
linguistic notions can be defined more naturally than with crisp
(non-fuzzy) sets.

A linguistic variable [43] is a variable whose values are
fuzzy sets. Figure 3 shows an example of ‘temperature’ defined
as a linguistic variable whose values may vary between too
low, pleasant, and too high. The classification of a given crisp
actual temperature (e.g. 25 degrees) as, say, too low is called
fuzzification, and is based on the membership values of the
crisp temperature in the three fuzzy sets. Conversely, a fuzzy
value can be defuzzified into an actual crisp number.

TooHighTooLow

Pleasant

Temperature

µ

Fig. 3. Temperature as a linguistic variable with TooLow, TooHigh and
Pleasant as values defined by fuzzy sets.

Linguistic variables are used to formulate fuzzy control
rules, such as “if the temperature is too low then add hot
water”.

Fuzzy control utilizes a fuzzy inference system (FIS) lever-
aging control rules specified in natural terms. Crisp input
signals (e.g. actual temperature in degrees) can be fuzzified
(e.g. interpreted as too hot) and evaluated by each rule;
the generated outputs are then aggregated and the result is
defuzzified, yielding a crisp output.

C. Interfacing behavioral programming and continuous con-
trol

Underlying our work is the issue of using behavioral pro-
gramming in hybrid designs that include a discrete behavioral
component. Following the lines of other work on switched
fuzzy systems, our approach is based on attaching such a
discrete system to a control system, where continuous signals
u and y have their usual roles as in classical control, with an
added input signal σ that switches the mode of the controller,
and an output signal ω that provides discrete classification of
the continuous signals.

Definition 4 (switchable control mechanism). A switch-
able control mechanism is modeled by equations of the form:{

u(t) = g(σ
(
[0, t)

)
, y
(
[0, t)

)
, t)

ω(t) = h(σ
(
[0, t)

)
, y
(
[0, t)

)
, t)

where y : [0,∞) → Rm is the input signal to the controller,
u : [0,∞) → Rl is the output signal that the controller
generates, σ : [0,∞) → Σ is the switching signal fed to the
controller from the discrete logic, and ω : [0,∞) → Ω is a
classification that the continuous controller feeds back to the
discrete logic. The notations y

(
[0, t)

)
and σ

(
[0, t)

)
denote

the history of the signals from time 0 to t (not including
time t). The symbols Σ and Ω denote finite sets from which
the discrete inputs and outputs are selected, respectively; the
numbers l,m ∈ N are the dimensions of the respective
continuous input and output signals; and g, h are functions
that map histories of the input signals to, respectively, the
continuous and discrete output signals.

We propose that the signal σ be provided by the discrete
behavioral-programming component, which, in turn, uses the
signal ω as an input:



Definition 5 (behavioral control interface). For a discrete
behavioral execution mechanism and a switchable control
mechanism, a behavioral control interface is a pair of func-
tions: fd2c : E → Σ, which maps events of the behavioral
system to discrete (switching) inputs of the control mechanism,
and a fc2d : Ω → E, which maps changes in the discrete
outputs of the control mechanism (signal classifications) to
events of the behavioral system.

Specifically, we propose to combine a behavioral program
with a fuzzy controller, in a way depicted structurally in Fig-
ure 4: the controller reads the continuous inputs and generates
the continuous outputs; some of the events of the behavioral
program component drive the switching in the continuous
component by changing the fuzzy inference rules and the
input/output filters (fed as the discrete input σ); some of the
linguistic variables generated by the fuzzy inference system
serve as the signal ω, which is translated into events that are
fed into the behavioral component.

III. EXAMPLES

A. Example 1: Adding fuzzy control to behavioral programs

Before examining behaviorally controlled switching, we
first focus on enhancing behavioral control systems with fuzzy
semantics.

Consider a control system for adjusting the water temper-
ature and flow of a water tap, which mixes the flow from
two taps — one for hot water and one for cold. Opening or
closing one of the taps affects the flow and the temperature:
For example, turning the hot water tap further in the open
direction, when both taps are already open, increases the flow
as well as the temperature. The purpose of the application
is to adjust water temperature and flow by turning hot and
cold water taps until the temperature and flow are sufficiently
“pleasant”. The program consists of the following b-threads
(shown in pseudo code):
AdjustHighTemp When the temperature is tooHigh, request

the events AddCold and ReduceHot, and block the
events ReduceCold and AddHot.

AdjustLowTemp When the temperature is tooLow, request
the events ReduceCold and AddHot, and block the
events AddCold and ReduceHot.

AdjustHighFlow When the flow is tooHigh, request the
events ReduceCold and ReduceHot, and block the
events AddCold and AddHot.

AdjustLowFlow: When the flow is tooLow, request the
events AddCold and AddHot, and block the events
ReduceCold and ReduceHot.

IndicateWhenPleasant: When both the flow and the tem-
perature are pleasant, show indicator.

These b-threads are interwoven and run simultaneously,
watching for changes in fuzzy linguistic variables. Their
coordination (as described in Definitions 2 and 3), results in
a cohesive integrated system behavior. For example, if the
water is too hot and the flow is too low, AdjustLowFlow
will take care of increasing the flow, while AdjustHighTemp

will independently take care of reducing the temperature. The
behavioral programming event selection mechanism will then
select only the AddCold event, which is the only event that
is requested and not blocked.

This basic example shows only short b-threads. In general,
b-threads can leverage the full power of the language — in
our case here, Java — to go through several phases, in each
of which they request and block different sets of events.

We now provide more details. Our example starts with a
non-fuzzy implementation of the specification using the BPJ
package and the following events (and b-threads):

External events, such as FlowTooHigh or TempTooLow,
are driven by a b-thread that repeatedly checks the
flow and temperature and generates the events based
on their current values and crisp numeric thresholds
(e.g., the external event TempTooHigh is generated
only when the current temperature exceeds 40 de-
grees).

Tap events, such as AddHot or ReduceCold, change the flow
by fixed amounts (e.g., closing a tap always results in
turning it five percent of its capacity). These events
are requested by “user” b-threads that wait for and
react to external events. An environment b-thread
waits for these tap events and actuates the taps (or a
simulator thereof). Additional b-threads simulate the
maximal and minimal limits of the tap positions.

System Events, such as Update and Stop, are used for
controlling the overall execution.

In way of adding fuzziness to the above program, the first
step is to associate natural language terms, such as Too High
or Pleasant, with linguistic variables (instead of crisp values
per membership functions as in Figure 3).

The membership values of these linguistic terms may now
be used by the environment b-thread for generating external
events, instead of by using numeric thresholds. In our case, the
system chooses the linguistic term with the highest member-
ship value as the event to be requested; i.e., when the current
temperature is more “too high” than it is “pleasant” or “too
low”, the event of TempTooHigh will be requested. We call
events generated in this way linguistic events.

The b-threads can also access the linguistic variables di-
rectly for arbitrary processing. Thus, for example, the value
of a variable such as the flowQuality or tempQuality is
the linguistic term with the highest membership value, and a
termination condition is coded using natural language terms
and the fuzzy-based assessment directly

do{ . . . }
until (flowQuality == Pleasant

&& tempQuality == Pleasant);

In addition to the above, b-threads can obtain from linguistic
events the associated crisp values of the measured quantity and
its µ membership value, and use these to select among alter-
native actions or to perform fuzzy inference in the behavioral
program. For example, the µ value can be used in decisions
(e.g., when the temperature “is more pleasant than it is too



Event
Selection

Mechanism

Behavior
Thread #1

Behavior
Thread #n

Discrete Behavioral Control

...

Input
Filter

Output
Filter

Fuzzy
Inference
System

Continuous Fuzzy Control

Behavioral
Output

Interface

Behavioral
Input

Interface

fd2c

fc2d

events

requests
and

blocking

events

actuation events

linguistic variablesω

discrete inputsexternal sensing events

mode switching: inference and filter def.σ

discrete outputs

cont. outputs
u

cont. inputs

y

Fig. 4. An architecture for a behaviorally-controlled switched fuzzy system. Behavior threads issue event-request and event-block commands to an event
selection mechanism that publishes allowed events. A behavioral output interface watches out for actuation events directed at the controlled system, and either
switches the mode of a fuzzy controller or actuates devices directly. Inputs from the controlled system are processed directly as crisp signals, or through the
fuzzy control system, or as linguistic variables that are used for generating external events to which behavior threads can react.

low”), or to refine the outputs of the behavioral program by
associating the tap actuation events with an amount that relies
on fuzzy computations to specify exactly how much a tap
should be opened or closed.

B. Example 2: Enhancing fuzzy rules with behavioral control

We now focus on the mode-switching section of the model.
We show that one can use behavioral programming to simplify
the programming of switched fuzzy controllers, aligning the
process better with how people often think about behavior,
when the control of a physical process can be broken into
distinct operation modes. Our exposition is carried out by mod-
ifying a benchmark example, that of a steam generation plant,
which is part of a publicly available demo of the fuzzyTECH
fuzzy control software package by INFORM Corporation [23].

In this example, a tank is filled with water, and a circulation
pump is started in order to fill the water pipes, following which
the fire is started. As the water pipes get hot and steam is
generated, pressure builds up. When the pressure is sufficient
the steam turbines are started.

The fuzzy rules of the original system in the fuzzyTECH
solution are grouped into three blocks:
RB3 (34 rules): controls the water level in the tank. For

example,

1. IF Status IS TankFill AND WaterLevel IS
AboveNormal

THEN DrainValve IS Closed, FeedValve IS
Closed

. . .
20. IF Status IS BuildPressure AND WaterLevel

IS Low
THEN DrainValve IS Medium, FeedValve IS

MinFlow
. . .

RB4 (10 rules): controls operation mode transitions. For
example,

. . .
4. IF FireOn IS False AND PumpOn IS False
AND WaterLevel IS CritFull
THEN Status IS StartPump

. . .

RB5 (6 rules): controls pump and fire actuation. For exam-
ple,

. . .
2. IF Status IS StartPump
THEN StartPump IS True AND StartFire IS

False
. . .

The variables of the fuzzyTECH system are divided into two
groups: input / output variables and variables for operation-
mode control.



The input variables are linguistic variables describing phys-
ical properties (e.g., WaterLevel is BelowNormal), and/or
binary input signals indicating the actuation of devices (such
as PumpOn). Similarly, the output variables are linguistic
variables describing quantitative parameters for device actua-
tion (e.g., FeedValve should be OpenMedium) and/or binary
signals driving ON/OFF signals for device actuation (such as
StartPump).

In contrast, Status, although highly visible in the rules,
is an internal variable. It is a discrete variable whose values
determine the operation mode (abbr. opmode) of the system. It
may be associated with specific stages or steps in the process;
e.g., TankFill, StartPump, BoilerFill, or Operating.1

As stated in the fuzzyTECH user manual [23]:

The linguistic variable Status [. . . ] is an in-
termediate linguistic variable that does not have
membership functions associated with its terms. The
variable Status is only used within the fuzzy logic
system as an input to the other two fuzzy rule blocks.

Here are the main issues that we focus on when introducing
behavioral programming into the design of this control system:

Intuitive modularity: Even though the expected changes
in opmode do follow some form of scenario, such
behavior is not always directly visible from the
rules. Moreover, using behavioral capabilities like
blocking events allows the description of a complex
scenario to be decomposed into multiple relatively
independent behaviors as perceived by humans.

Efficiency: All three rule blocks are active while this fuzzy
system is active, and all are evaluated with every
computation cycle, even though in each process-
phase only a subset of the rules can be triggered.

Complexity: Although Status is a simple discrete variable,
its maintenance requires ten rules. These rules are
recomputed with every system computation step,
regardless of whether an event that may cause an
operation-mode change has occurred. Additionally,
the appearance of Status as an input variable in all
of rules renders the entire application more complex.

So, how can behavioral programming techniques be applied
in the programming of switched fuzzy control to enhance the
rules-only solution?

Our approach is based on using behavioral events for mark-
ing changes in the linguistic variables that describe physical
properties, and for indicating changes in the operation mode.
The mode changes are carried out by translating them into
changes in the definition of the fuzzy system; and these, in
turn, are carried out by loading new rules, changing input/out-
put definitions, or even switching to a totally different control
system.

1Although some of the mode names in this example may sound like
commands, they actually describe the mode associated with executing the
command. For example, when the Status variable is assigned the sta-
tus/opmode value StartPump, the rules issue a command by setting the
output variable StartPump to True.

We introduce and then use a package called BFuz, which
provides an interface for loading a fuzzy system from a
specification file, changing its active rule blocks and input/out-
put definitions, and generating linguistic events that reflect
monitored physical properties (see Section IV).

a) Creating behavioral linguistic events: The connection
between the physical properties of the continuous part of
the system and the event-based discrete behavioral part is
established by creating events that correspond to changes in
the linguistic values of the variables in the fuzzy system. As
the relevant physical properties of the system are monitored,
these events, which we term [behavioral] linguistic events, are
generated as follows.

A separate event class is associated with each linguistic term
(e.g., Water Level Below Normal) of each linguistic variable (in
this case, Water Level). An ongoing process repeatedly obtains
measurements of the set of relevant physical properties of the
system, evaluates the membership functions for the linguistic
variables, and generates linguistic events accordingly.2

b) Creating behavioral opmode events: The changes
in operation mode are managed as follows. Variables that
participate in the fuzzy rules but reflect operation modes
and not physical properties, are replaced by events called
[behavioral] operation-mode events (abbr. opmode events).
In our example, the Status variable is implemented using
opmode events. A subclass of this event class is created
for each possible mode; i.e., for each possible value of the
variable. Then, the rules that change the values of the operation
mode variables are replaced with b-threads that watch out
for a corresponding behavioral linguistic event and request
a corresponding opmode event. In this example, when the
linguistic event WaterLevelCritFull occurs, the opmode
event StartPump is requested. The resulting b-thread that
manages the opmode transitions is depicted in Figure 5.

When the state of the system is actually composed of the
states of multiple opmode variables, the developer may choose
either to designate a separate explicit opmode value for each
combination or to handle the combinations implicitly in the
logic of the b-threads that track the opmode variables.

c) Reorganizing the rule blocks: The rules of the fuzzy
system that depend on opmode variables such as Status are
reorganized in blocks, where all rules in a given block are
required to have the same value of the opmode variable. Thus,
for each opmode there is a rule block, all of whose rules are
relevant to it. In our implementation, the 34 rules that resided
in one rule block (RB3; see Figure 6) were divided into six
(smaller) rule-blocks. For example, the rule

IF Status IS TankFill AND WaterLevel IS
AboveNormal

THEN DrainValve IS Closed, FeedValve IS Closed

2In the current BPJ implementation, the external linguistic events are not
different from the internal events. They are generated with the assumption
that no b-thread blocks such events. In the future, we might enhance BPJ to
allow events that represent external events, and which cannot be blocked.



. . .
// TankFill is the initial operation mode
Request(InitialOpmode);

// move to the next opmode
WaitFor(WaterLevelFull or WaterLevelCritFull);
Request(StartPump);

WaitFor(PumpOn);
Request(BoilerFill);

WaitFor(WaterLevelFireStart);
Request(StartFire);

WaitFor(FireOn);
Request(BuildPressure);

WaitFor(PressureOperating);
Request(Operating);
. . .

Fig. 5. Controlling operation mode changes: pseudo-code of the main
behavior thread.

Fig. 6. Rule Block RB3

resides only in the block for the opmode TankFill. Changes
in operation modes are indicated by opmode events that can
be watched out for by b-threads, and which can be optionally
handled by (a) loading new rule blocks into the running fuzzy
system, and/or (b) executing crisp device actuation.

d) Rule simplification: In the opmode-specific rule
blocks, rules may be simplified. Depending on the use of the
opmode variable, once its value is known the condition may
be eliminated. For example, the aforementioned rule related
to an above-normal water level can be replaced by the simpler
one:

IF WaterLevel IS AboveNormal
THEN DrainValve IS Closed, FeedValve IS Closed

e) Rule elimination: Rules that use only discrete input
and output variables can be completely replaced by appropriate
behavioral program parts. For example, the rules of RB5 that
initiate actuation of the circulation pump and the fire, based
on the non-fuzzy Status variable, can be replaced by a

b-thread that waits for the system to enter the StartPump

(resp., StartFire) opmode and after a short delay requests
the corresponding PumpOn (resp., FireOn) event. When the
behavioral event occurs, the b-thread performs device-specific
actuation, validates the results and reports them. Thus the rule

IF Status IS StartFire
THEN StartFire IS True, StartPump IS True

can be eliminated. In our solution, the entire rule block RB5 is
eliminated in this manner and is replaced by a single actuation
b-thread:

WaitFor(StartPump);
startPump();
Request(PumpOn);

WaitFor(StartFire);
startFire();
Request(FireOn);

Completing the process described in the previous subsec-
tions results in a system whose architecture fits the struc-
ture shown in Figure 4. The following basic advantages in
efficiency and maintainability are derived from our use of
scenarios and behavioral event-driven control.

First, rule blocks RB4 and RB5 are eliminated, so that their
rules are not evaluated with every system computation cycle.
Second, rule block RB3 is split into six smaller blocks, thus
reducing the number of fuzzy control rules that are evaluated
with every cycle and simplifying them. The following table
summarizes some of the transformation results:

fuzzyTECH BFuz

Fuzzy rules 50 34
Linguistic variables 10 5
Rule blocks 3 6
Modes 1 6

Min. rules per cycle 50 2
Max. rules per cycle 50 8
Max. rules in a block 34 8
Max. variables in if clause 3 2(excluding eliminated blocks)

Mode-specific rule blocks 1 6
Opmode switching rule blocks 1 0
Direct actuation rule blocks 1 0

Introducing behavioral programming principles into “clas-
sical” control systems has other benefits as well. First, as
shown in the steam generation example, mode transitions are
coded in a scenario (see Figure 5), in a way that expresses
the flow of time explicitly rather than implicitly. Second, the
full power of the programming language can be leveraged
in making decisions about mode transitions. This allows for
more intricate computations involving membership and crisp
values, reliance on external data and conditions, and possibly
also efficiency gains by reducing the frequency with which the



opmode transition is considered.3

Finally, behavioral programming allows blocking undesired
behaviors without the need for direct communication with the
software components that may request them. For example, it
is easy to add to our example a safety condition through a
b-thread that blocks the actuation of the fire when the water
pump is not on. Such a new scenario does not need to modify
existing b-threads or rules and does not have to change when
new b-threads or rules that drive fire actuation are added. This
can also be achieved by a small modification of the existing
actuation b-thread mentioned above, by replacing WaitFor(

StartPump) with:

WaitFor(StartPump) and Block(StartFire).

IV. BFUZ: A FUZZY PACKAGE FOR JAVA

The BFuz package that we constructed to support the
approach described in this paper, allows one to develop
behavioral-fuzzy systems in Java via BPJ. The source code
for the implementation, as well as a recorded demo of an
execution, are available online [19].

The BFuz package provides an interface that allows the
programmer to connect to and control the continuous rule-
based fuzzy component of the model from the event-based
component, and can be viewed as an extension of a fuzzy
inference system (FIS). We assume that a FIS specification
is given as a fuzzy control programming file (.fcl), which
is a standard published by the International Electrotechnical
Commission (IEC), and that the fuzzy components of the
system are developed with jFuzzyLogic [30], an open source
fuzzy logic package for Java.

The main purpose of the interface is to facilitate transla-
tion of crisp sensor values into behavioral events and vice
versa, and ongoing replacement of active rule blocks that
autonomously control a fuzzy system.

V. RELATED WORK AND DISCUSSION

Using multiple controllers and programming a computer
to switch between them is common practice in control engi-
neering. One example involves systems with selectors, which
have been used for constraint control [6]. Systems with gain
scheduling constitute another example [26]. Some examples
of hybrid systems for control are described in [8] and [7],
where many different controllers are used and their coor-
dination is dealt with by a specially constructed language.
Other proposals, such as the controller discussed in [4], use
a hierarchical structure, where a collection of controllers is
driven by an expert system. Malmborg’s thesis [28] contains
additional references to related hybrid models.

Frameworks that integrate fuzzy logic [24] and discrete
event controllers are described in [31, 40]. The idea of mixing,

3In a different behavioral implementation we could do without the b-thread
in Figure 5. The opmode transition rules in RB4 could possibly be replaced
by mode-exit rules placed inside the opmode specific rule blocks. However,
the result would still require an internal status variable and would not
express the flow of time explicitly.

or switching between, control signals for hybrid systems that
are represented as local models with local controllers is very
much in line with what is done in the research on fuzzy
control. Some hybrid control schemes can be viewed as fuzzy
controllers [34]. In [1], Altamiranda et al propose to use a
fuzzy inference system to generate events for a discrete event
controller. In, e.g., [11, 32, 44, 45], logic is used to switch
between fuzzy logic and a PID controller. Takagi-Sugeno
fuzzy systems [35] are described by fuzzy IF-THEN rules
that locally represent linear input-output relations; i.e., they
model a fuzzy inference system that switches the modes of
a linear controller. Similarly, Ferreira and Krogh [13] apply
neural networks to switching control strategies. A survey of
switched fuzzy systems is presented in [29].

Other related work is the research on fuzzy state machines
[37, 38, 41]. Motivated by that work, we examined the
possibility of allowing scenarios whose state is fuzzy. We
chose, however, not to allow this as a programming construct
at this point, because such constructs may be too hard to use
and comprehend. Still, we consider this issue open for future
research.

Another possible direction for future research involves en-
hancing the existing modalities with fuzziness. The specifi-
cation of what must, may or must not occur can also be
associated with fuzzy natural language terms indicating the
strength of the behavioral command. For example, “block
event e1 and try to avoid event e2”. The event selection
mechanism can then consider these fuzzy values for making,
or optimizing, its decision.

Another interesting research direction is to extend the
model-checking capabilities of the BPmc tool [15] to
behaviorally-controlled switched fuzzy systems.

In summary, we have shown that combining fuzziness and
behavioral programming provides synergy that can make the
development both of discrete behavioral controllers and of
switched fuzzy systems more natural and intuitive.

ACKNOWLEDGMENT

We would like to thank Moshe Vardi for his valuable
suggestions, and Yossi Weiss for reviewing earlier versions
and providing fresh insights. The research of the first three
authors was supported in part by the John von Neumann
Minerva Center for the Development of Reactive Systems
at the Weizmann Institute of Science, and by an Advanced
Research Grant to DH from the European Research Council
(ERC) under the European Community’s FP7 Programme. The
research of the fourth author was supported in part by the
Lynn and William Frankel Center for Computer Science at
Ben-Gurion University and a research grant (IRG) under the
European Community’s FP7 Programme.

REFERENCES

[1] E. Altamiranda, H. Torres, E. Colina, and E. Chaćon. Supervi-
sory control design based on hybrid systems and fuzzy events
detection. application to an oxichlorination reactor. ISA Trans,
41(4):485–99, 2002.



[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, 1995.

[3] P. Antsaklis and X. Koutsoukos. On hybrid control of complex
systems: A survey. ISIS, 97:017, 1997.

[4] P. Antsaklis, J. Stiver, and M. Lemmon. Hybrid system
modeling and autonomous control systems. Hybrid Systems,
pages 366–392, 1993.

[5] Z. Artstein. Examples of stabilization with hybrid feedback.
Hybrid Systems III, pages 173–185, 1996.

[6] K. Åström and T. Hägglund. PID controllers: theory, design,
and tuning. Instrument Society of America, 67, 1995.

[7] R. Brockett. Hybrid Models for Motion Control Systems. Es-
says on Control: Perspectives in the Theory and its Applications,
page 29, 1993.

[8] R. Brooks. Elephants don’t play chess. Robotics and au-
tonomous systems, 6(1-2):3–15, 1990.

[9] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. J. on Formal Methods in System Design,
19(1), 2001.

[10] M. Egerstedt. Behavior based robotics using hybrid automata.
Hybrid Systems: Computation and Control, pages 103–116,
2000.

[11] I. Erenoglu, I. Eksin, E. Yesil, and M. Guzelkaya. An intelligent
hybrid fuzzy PID controller. Proceeding of the 20th European
Conference on Modeling and Simulation, pages 1–5, 2006.

[12] G. Feng. A survey on analysis and design of model-based fuzzy
control systems. IEEE Trans. on Fuzzy Systems, 14(5):676–697,
2006.

[13] E. Ferreira and B. Krogh. Switching controllers based on
neural network estimates of stability regions and controller
performance. Hybrid Systems: Computation and Control, pages
126–142, 1998.

[14] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-
out of behavioral requirements. In FMCAD, pages 378–398.
Springer, 2002.

[15] D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-
checking behavioral programs. In EMSOFT, 2011.

[16] D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo: towards
a comprehensive tool for scenario based programming. In ASE,
2010.

[17] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer, 2003.

[18] D. Harel, A. Marron, and G. Weiss. Behavioral programming.
Communications of the ACM. To appear.

[19] D. Harel, A. Marron, and G. Weiss. The BPJ Library. www.
cs.bgu.ac.il/∼geraw.

[20] D. Harel, A. Marron, and G. Weiss. Programming coordinated
scenarios in Java. In 24th European Conference on Object-
Oriented Programming (ECOOP), 2010.

[21] D. Harel, A. Marron, G. Weiss, and G. Wiener. Behavioral
programming, decentralized control, and multiple time scales.
AGERE (”Agents and Actors Reloaded”), 2011.

[22] D. Harel and I. Segall. Planned and traversable play-out: A
flexible method for executing scenario-based programs. TACAS,
pages 485–499, 2007.

[23] INFORM Gmbh. fuzzyTECH Software Package www.
inform-ac.com/fuzzytech.htm.

[24] G. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and
applications. Prentice Hall, 1995.

[25] H. Kugler, C. Plock, and A. Roberts. Synthesizing biological
theories. In CAV, 2011.

[26] D. Leith and W. Leithead. Survey of gain-scheduling analysis
and design. International Journal of Control, 73(11):1001–
1025, 2000.

[27] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid

systems. In Real-time, theory in practice: REX Workshop,
Mook, the Netherlands, June 3-7, 1991: proceedings, page 447.
Springer, 1992.

[28] J. Malmborg. Analysis and Design of Hybrid Control Systems.
PhD thesis, Lund Institute of Technology, Sweden, 1998.

[29] V. Ojleska and G. Stojanovski. Switched fuzzy systems:
Overview and perspectives. In 9th International PhD Workshop
on Systems and Control: Young Generation Viewpoint, Slovenia,
volume 1, 2008.

[30] P.Cingolani. jFuzzyLogic Open Source Project http://
jfuzzylogic.sourceforge.net.

[31] P. Ramadge and W. Wonham. The control of discrete event
systems. Proc. of the IEEE, 77(1):81–98, 1989.

[32] M. Rashid and A. Wali. Fuzzy-PID hybrid controller for
point-to-point (PTP) positioning system. American Journal of
Scientific Research, 9:72–80, 2010.

[33] B. Shimony, I. Nikolaidis, P. Gburzynski, and E. Stroulia. On
coordination tools in the PicOS tuples system. SESENA, 2011.

[34] M. Sugeno and T. Takagi. Multi-dimensional fuzzy reasoning.
Fuzzy Sets and Systems, 9(1-3):313–325, 1983.

[35] K. Tanaka, T. Ikeda, and H. Wang. Fuzzy regulators and fuzzy
observers: relaxed stability conditions and LMI-based designs.
IEEE Trans. on Fuzzy Systems, 6(2):250–265, 1998.

[36] C. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic
approach to controller design for hybrid systems. Proceedings
of the IEEE, 88(7):949 –970, jul. 2000.

[37] H. Wang and D. Qiu. Computing with words via turing
machines: a formal approach. IEEE Trans. on Fuzzy Systems,
11(6), 2003.

[38] W. Wee and K. Fu. A formulation of fuzzy automata and its
application as a model of learning systems. IEEE Trans. on
Systems Science and Cybernetics, 5(3):215–223, 1969.

[39] G. Wiener, G. Weiss, and A. Marron. Coordinating and visual-
izing independent behaviors in Erlang. In 9th ACM SIGPLAN
Erlang Workshop, 2010.

[40] W. Wonham. On the control of discrete-event systems.
Three decades of mathematical system theory, pages 542–562.
Springer, 1989.

[41] M. Ying. A formal model of computing with words. IEEE
Trans. on Fuzzy Systems, 10(5):640–652, 2002.

[42] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–
353, 1965.

[43] L. A. Zadeh. Outline of new approach to the analysis of complex
systems and decision processes. IEEE Trans. Systems, Man, and
Cybernet., SMC-3:28–44, 1973.

[44] M. Zerikat and S. Chekroun. Design and implementation of
a hybrid fuzzy controller for a high-performance induction
motor. World Academy of Science, Engineering and Technology,
26:263–269, 2007.

[45] Y. Zhang. Fuzzy-PID hybrid control for temperature of melted
aluminum in atomization furnace. In ISDA ’06, volume 1, pages
332 –335, Oct. 2006.


